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Abstract

Election forecasts have traditionally been based on representative polls, in which randomly
sampled individuals are asked for whom they intend to vote. While representative polling
has historically proven to be quite effective, it comes at considerable financial and time costs.
Moreover, as response rates have declined over the past several decades, the statistical ben-
efits of representative sampling have diminished. In this paper, we show that with proper
statistical adjustment, non-representative polls can be used to generate accurate election
forecasts, and often faster and at less expense than traditional survey methods. We demon-
strate this approach by creating forecasts from a novel and highly non-representative survey
dataset: a series of daily voter intention polls for the 2012 presidential election conducted on
the Xbox gaming platform. After adjusting the Xbox responses via multilevel regression and
poststratification, we obtain estimates in line with forecasts from leading poll analysts, which
were based on aggregating hundreds of traditional polls conducted during the election cycle.
We conclude by arguing that non-representative polling shows promise not only for election
forecasting, but also for measuring public opinion on a broad range of social, economic and
cultural issues.
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1. Introduction

At the heart of modern opinion polling is representative sampling, built around the goal
that every individual in a particular target population such as registered or likely U.S. voters
has the same probability of being sampled. From address-based, in-home interview sampling
in the 1930s to random digit dialing after the growth of landlines and cellphones, leading
polling organizations have put immense effort into obtaining representative samples.
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The wide-scale adoption of representative polling can largely be traced to a pivotal polling
mishap in the 1936 U.S. presidential election campaign. During that campaign, the pop-
ular magazine Literary Digest conducted a mail-in survey that attracted over two million
responses, a huge sample even by modern standards. The magazine, however, incorrectly pre-
dicted a landslide victory for Republican candidate Alf Landon over the incumbent Franklin
Roosevelt. Roosevelt, in fact, decisively won the election, carrying every state except for
Maine and Vermont. As pollsters and academics have since pointed out, the magazine’s
pool of respondents was highly biased: it consisted mostly of auto and telephone owners as
well as the magazine’s own subscribers, which underrepresented Roosevelt’s core constituen-
cies (Squire, 1988). During that same campaign, pioneering pollsters, including George
Gallup, Archibald Crossley, and Elmo Roper, used considerably smaller but representative
samples to predict the election outcome with reasonable accuracy (Gosnell, 1937). Accord-
ingly, non-representative or “convenience sampling” rapidly fell out of favor with polling
experts.

So why do we revisit this seemingly long-settled case? Two recent trends spur our inves-
tigation. First, random digit dialing (RDD), the standard method in modern representative
polling, has suffered increasingly high non-response rates, both due to the general public’s
growing reluctance to answer phone surveys, and expanding technical means to screen un-
solicited calls (Keeter et al., 2006). By one measure, RDD response rates have decreased
from 36% in 1997 to 9% in 2012 (Kohut et al., 2012), and other studies confirm this trend
(Holbrook et al., 2007; Steeh et al., 2001; Council, 2013). Assuming the initial pool of targets
is representative, with such low response rates, those who ultimately answer the phone and
elect to respond might not be. Even if the selection issues are not yet a serious issue for
accuracy, as some have argued (Holbrook et al., 2007), the downward trend in response rates
suggest an increasing need for post-sampling adjustment, and indeed the adjustment meth-
ods we present here should work just as well for surveys obtained by probability sampling as
with convenience samples. The second trend driving our research is that with recent techno-
logical innovations, it is increasingly convenient and cost-effective to collect large numbers
of highly non-representative samples via online surveys. What took several months for the
Literary Digest editors to collect in 1936 can now take only a few days and for some surveys
can cost just pennies per response. The challenge is to extract meaningful signal from these
unconventional samples.

In this paper, we show that with proper statistical adjustment, non-representative polls
are able to yield accurate presidential election forecasts, on par with those based on tradi-
tional representative polls. We proceed as follows. Section 2 describes the election survey
that we conducted on the Xbox gaming platform during the 45 days leading up to the 2012
U.S. presidential race. Our Xbox sample is highly biased in two key demographic dimen-
sions, gender and age, and the raw responses accordingly disagree with the actual outcomes.
The statistical techniques we use to adjust the raw estimates are introduced in two stages.
In Section 3, we construct daily estimates of voter intent via multilevel regression and post-
stratification (MRP). The central idea of MRP is to partition the data into thousands of
demographic cells, estimate voter intent at the cell level with a multilevel regression model,



and finally to aggregate cell-level estimates in accordance with the target population’s de-
mographic composition. Recent work suggests that non-probability samples provide worse
estimates compared to probability samples (Yeager et al., 2011), but that work used simple
adjustment techniques, not MRP. Even after getting good estimates of daily voter intent,
however, more needs to be done to translate to election-day forecasts. Section 4 describes
how to transform voter intent to projections of vote share and electoral votes. We conclude
in Section 5 by discussing the potential for non-representative polling in other domains.

2. Xbox data

Our analysis is based on an opt-in poll continuously available on the Xbox gaming plat-
form during the 45 days preceding the 2012 U.S. presidential election. Each day, three to five
questions were posted, one of which gauged voter intention with the standard query, “If the
election were held today, who would you vote for?” Full details of the questionnaire are in the
Appendix. Respondents were allowed to answer at most once per day. The first time they
participated in an Xbox poll, respondents were additionally asked to provide basic demo-
graphic information about themselves, including their sex, race, age, education, state, party
ID, political ideology, and for whom they voted in the 2008 presidential election. In total,
750,148 interviews were conducted with 345,858 unique respondents—over 30,000 of whom
completed five or more polls—making this one of the largest ever election panel studies.

Sex Race Age Education State Party ID Ideology 2008 Vote

100% -

75% -

50%

25%

0%

T T T T
@ @ @ Xt ¢ A 2 o @ > & @ > S oy > @ N X
& & & & AN G FFEFFEE &S @ FE & & &
& @ (K o [ S & P S S & T & IS I N [ o
Py & I AN NN _be & & kS & M R
g S @ & & > § & & & 5
[ O ¢ LT P & R
& & L 7
& o
& S
& %

— XBox  ---+ 2012 Exit Poll

Figure 1: A comparison of the demographic, partisan, and 2008 vote distribution in the
Xbox dataset and the 2012 electorate (as measured by adjusted exit polls). The sex and age
distributions, as one might expect, exhibit considerable differences.
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Figure 2: Daily (unadjusted) Xbox estimates of two-party Obama support during the 45
days leading up to the 2012 presidential election, which suggest a landslide victory for Mitt
Romney. The dotted blue line indicates a consensus average of traditional polls (the daily
aggregated polling results from Pollster.com), the horizontal dashed line at 52% indicates
the actual two-party vote share obtained by Barack Obama, and the vertical dotted lines
give the dates of the three presidential debates.

Despite the large sample size, the pool of Xbox respondents is far from representative of
the voting population. Figure 1 compares the demographic composition of the Xbox partic-
ipants to that of the general electorate, as estimated via the 2012 national exit poll.2 The
most striking differences are for age and sex. As one might expect, young men dominate the
Xbox population: 18-to-29-year-olds comprise 65% of the Xbox dataset, compared to 19% in
the exit poll; and men make up 93% of the Xbox sample but only 47% of the electorate. Po-
litical scientists have long observed that both age and sex are strongly correlated with voting
preferences (Kaufmann and Petrocik, 1999), and indeed these discrepancies are apparent in
the unadjusted time-series of Xbox voter intent shown in Figure 2. In contrast to estimates

2For ease of interpretation, in Figure 1 we group states into 4 categories: (1) battleground states (Col-
orado, Florida, Iowa, New Hampshire, Ohio, and Virginia), the five states with the highest amounts of TV
spending plus New Hampshire, which had the highest per-capita spending; (2) quasi-battleground states
(Michigan, Minnesota, North Carolina, Nevada, New Mexico, Pennsylvania, and Wisconsin), which round
out the states where the campaigns and their affiliates made major TV buys; (3) solid Obama states (Cal-
ifornia, Connecticut, District of Columbia, Delaware, Hawaii, Illinois, Maine, Maryland, Massachusetts,
New Jersey, New York, Oregon, Rhode Island, Vermont, and Washington); and (4) solid Romney states
(Alabama, Alaska, Arizona, Arkansas, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Mississippi,
Missouri, Montana, Nebraska, North Dakota, Oklahoma, South Carolina, South Dakota, Tennessee, Texas,
Utah, West Virginia, and Wyoming).



based on traditional, representative polls (indicated by the dotted blue line in Figure 2), the
uncorrected Xbox sample suggests a landslide victory for Mitt Romney, reminiscent of the
infamous Literary Digest error.

3. Estimating voter intent with multilevel regression and poststratification

3.1. Multilevel regression and poststratification

To transform the raw Xbox data into accurate estimates of voter intent in the general
electorate, we make use of the rich demographic information that respondents provide. In
particular we poststratify the raw Xbox responses to mimic a representative sample of likely
voters. Poststratification is a popular method for correcting for known differences between
sample and target populations (Little, 1993). The core idea is to partition the population into
cells based on combinations of various demographic and political attributes, use the sample
to estimate the response variable within each cell, and finally to aggregate the cell-level
estimates up to a population-level estimate by weighting each cell by its relative proportion
in the population. Using y to indicate the outcome of interest, the poststratification estimate
is defined by,
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where g; is the estimate of y in cell j, and Nj; is the size of the j-th cell in the population.
We can analogously derive an estimate of y at any subpopulation level s (e.g., voter intent

in a particular state) by
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where J; is the set of all cells that comprise s. As is readily apparent from the form of
the poststratification estimator, the key is to obtain accurate cell-level estimates, as well as
estimates for the cell sizes.

One of the most common ways to generate cell-level estimates is to simply average sample
responses within each cell. If we assume that within a cell the sample is drawn at random
from the larger population, this yields an unbiased estimate. However, this assumption of
cell-level simple random sampling is only reasonable when the partition is sufficiently fine;
on the other hand, as the partition becomes finer, the cells become sparse, and the empirical
sample averages become unstable. We address these issues by instead generating cell-level
estimates via a regularized regression model, namely multilevel regression. This combined
model-based poststratification strategy, known as multilevel regression and poststratification
(MRP), has been used to obtain accurate small-area subgroup estimates, such as for public
opinion and voter turnout in individual states and demographic subgroups (Park et al., 2004;
Lax and Phillips, 2009; Ghitza and Gelman, 2013).

More formally, applying MRP in our setting comprises two steps. First a Bayesian hierar-
chical model is fit to obtain estimates for sparse poststratification cells; second, one averages
over the cells, weighting by a measure of forecasted voter turnout, to get state and national-
level estimates. Specifically, we generate the cells by considering all possible combinations



of sex (2 categories), race (4 categories), age (4 categories), education (4 categories), state
(51 categories), party ID (3 categories), ideology (3 categories) and 2008 vote (3 categories),
which partition the data into 176,256 cells.® Including the political variables is important
because they are strong predictors of vote intention. Poststratifying on party identification
has sometimes been controversial (Pollster) but we are comfortable with it here, first because
it tends to vary more slowly than vote intentions and political attitudes (Gelman and King,
1993; Cavan Reilly and Katz, 2001), and second because party identification and the other
background variables in the Xbox survey were measured only once during the campaign, at
the time of the respondents entry into the panel.

We fit two, nested multilevel logistic regressions to estimate candidate support in each
cell. The first of the two models predicts whether a respondent supports a major-party
candidate (i.e., Obama or Romney), and the second predicts support for Obama given that
the respondent supports a major-party candidate. Following the notation of Gelman and
Hill (2007), the first model is given by

Pr(Y; € {Obama, Romney}) =

logit ™" (ap + v (state last vote share) (1)
state edu sex age race arty 1D ideolo last vote
+ajii + affy + a3 + alfl + e i b b )

where o is the fixed baseline intercept, and «; is the fixed slope for Obama’s fraction of two-
party vote share in the respondent’s state in the last presidential election. The terms a3t

Jld
ai[dﬂ“, ase) and so on—which in general we denote by a}fﬁl]”—correspond to varying coefficients
associated with each categorical variable. Here the subscript j[i] indicates the cell to which

the i-th respondent belongs. For example, a’ takes values from {ai§" 59, a35- 44, 432 64, g5+
depending on the cell membership of the ¢-th respondent. The varying coefficients ajf are

given independent prior distributions

var

ajp ~ N(0,02.).

To complete the full Bayesian specification, the variance parameters are assigned a hyperprior
distribution
2

Ovar ™ inV_XQ(V7 0(2)>7

with a weak prior specification for the remaining parameters, v and og. The benefit of
using a multilevel model is that estimates for relatively sparse cells can be improved through
“borrowing strength” from demographically similar cells that have richer data. Similarly,

3 All demographic variables are collected prior to respondents’ first poll, alleviating concerns that respon-
dents may adjust their demographic responses to be inline with their voter intention (e.g., a new Obama
supporter switching his or her party ID from Republican to Democrat).



the second model is defined by

Pr(Y; =Obama|Y; € {Obama, Romney}) =

logit™" (8o + B (state last vote share) (2)
state edu sex age race party 1D ideology last vote
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and
;,?zli ~ N(07 773ar)a
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Jointly, Egs. (1) and (2) define a Bayesian model that describes the data. Ideally, we would
perform a fully Bayesian analysis to obtain the posterior distribution of the parameters.
However, for computational convenience, we use the approximate marginal maximum like-
lihood estimates obtained from the glmer () function in the R package 1me4 (Bates et al.,
2013). We run the multilevel model daily using a four-day moving window, aggregating the
data collected on that day and the previous three days, to make cell-level estimates for each
of the 45 days leading up to the election.

Having detailed the multilevel regression step, we now turn to poststratification, where
cell-level estimates are weighted by the proportion of the electorate in each cell and aggre-
gated to the appropriate level (e.g., state or national). To compute cell weights, we require
cross-tabulated population data. One commonly used source for such data is the Current
Population Survey (CPS); however, the CPS does not include some key poststratification
variables, such as party identification. We thus instead use exit poll data from the 2008
presidential election. Exit polls are conducted on election day outside voting stations to
record the choices of exiting voters, and they are generally used by researchers and news
media to analyze the demographic breakdown of the vote (after a post-election adjustment
that aligns the weighted responses to the reported state-by-state election results). In total,
101,638 respondents were surveyed in the state and national exit polls. We use the exit
poll from 2008, not 2012, because this means that in theory our method as described here
could have been used to generate real-time predictions during the 2012 election campaign.
Admittedly, this approach puts our prediction at a disadvantage since we cannot capture
the demographic shifts of the intervening four years. While combining exit poll and CPS
data would arguably yield improved results, for simplicity and transparency we exclusively
use the 2008 exit poll summaries for our poststratification.

3.2. National and state voter intent

Figure 3 shows the adjusted two-party Obama support for the last 45 days of the election.
Compared with the uncorrected estimates in Figure 2, the MRP-adjusted estimates yield a
much more reasonable timeline of Obama’s standing over the course of the final weeks of
the campaign. With a clear advantage at the beginning, Obama’s support slipped rapidly
after the first presidential debate—though never falling below 50%—and gradually recovered,
building up a decisive lead in the final days.
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Figure 3: National MRP-adjusted voter intent of two-party Obama support over the 45-day
period and the associated 95% confidence bands. The horizontal dashed line indicates the
actual two-party Obama vote share. The three vertical dotted lines indicate the presidential
debates. Compared with the raw responses in Figure 2, the MRP-adjusted voter intent is
much more reasonable, and voter intent in the last few days is close to the actual outcome.
For comparison, the daily aggregated polling results from Pollster.com, shown as the blue
dotted line, are further away from the actual vote share than the estimates generated from
the Xbox data in the last few days.

On the day before the election, our estimate of voter intent is off by a mere 0.6 percentage
points from the actual outcome (indicated by the dotted horizontal line). Voter intent in the
weeks prior to the election does not directly equate to an estimate of vote share on election
day—a point we return to in Section 4. As such, it is difficult to evaluate the accuracy of our
full time-series of estimates. Our estimates are not only intuitively reasonable and are also
in line with prevailing estimates based on traditional, representative polls. In particular, our
estimates roughly track—and are even arguably better than—those from Pollster.com, one
of the leading poll aggregators during the 2012 campaign. We are following now-standard
practice by comparing to an aggregate of nationally reported polls, not to any selected subset
of polls that might be judged to be of highest quality. Again, our goal here is not to bash
conventional polling but rather to demonstrate how, with sophisticated adjustments, we can
match that performance even with a highly non-representative opt-in sample.

National vote share receives considerable media attention, but state-level estimates are
particularly relevant for many stakeholders given the role of the Electoral College in selecting
the winner (Rothschild, 2013). Forecasting state-by-state races is a challenging problem due
to the interdependencies in state outcomes, the logistical difficulties of measuring state-level
vote preference, and the effort required to combine information from various sources (Lock
and Gelman, 2010). The MRP framework, however, provides a straightforward methodology
for generating state-level results. Namely, we use the same cell-level estimates employed in
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Figure 4: MRP-adjusted daily voter intent for the 12 states with the most electoral votes,
and the associated 95% confidence bands. The horizontal dashed lines in each panel give the
actual two-party Obama vote shares in that state. The mean and median absolute errors
of the last day voter intent across the 51 Electoral College races are 2.5 and 1.8 percentage
points, respectively. The state-by-state daily aggregated polling results from Pollster.com,
given in the dotted blue lines, are broadly consistent with the estimates from the Xbox data.

the national estimate, as generated via the multilevel model in Egs. (1) and (2), and we then
poststratify to each state’s demographic composition. In this manner, the Xbox responses
can be used to construct estimates of voter intent over the last 45 days of the campaign for
all 51 Electoral College races.

Figure 4 shows two-party Obama support for the 12 states with the most electoral votes.
The state timelines share similar trends (e.g., support for Obama dropping after the first
debate), but also have their own idiosyncratic movements, an indication of a reasonable
blend of national and state-level signals. To demonstrate the accuracy of the MRP-adjusted
estimates, we plot, in dotted blue lines in Figure 4, the estimates generated by Pollster.com,
which are broadly consistent with our state-level MRP estimates. Moreover, across the 51
Electoral College races, the mean and median absolute errors of our estimates on the day
before the election are just 2.5 and 1.8 percentage points, respectively.

3.3. Voter intent for demographic subgroups

Apart from Electoral College races, election forecasting often focuses on candidate pref-
erence among demographic subpopulations. Such forecasts are of significant importance in
modern political campaigns, which often employ targeted campaign strategies (Hillygus and
Shields, 2009). In the highly non-representative Xbox survey, certain subpopulations are
heavily underrepresented and plausibly suffer from strong self-selection problems. This begs
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Figure 5: Comparison of two-party Obama vote share for various demographic subgroups,
as estimated from the 2012 national exit poll and from the Xbox data on the day before the
election.

the question, can we reasonably expect to estimate the views of older women on a platform
that largely caters to young men?

It is straightforward in MRP to estimate voter intent among any collection of demographic
cells: we again use the same cell-level estimates as in the national and state settings, but
poststratify to the desired target population. For example, to estimate voter intent among
women, the poststratification weights are based on the relative number of women in each
demographic cell. To illustrate this approach, we compute Xbox estimates of Obama support
for each level of our categorical variables (e.g., males, females, Whites, Blacks, etc.) on the
day before the election, and compare those with the actual voting behavior of those same
groups as estimated by the 2012 national exit poll. As seen in Figure 5, the Xbox estimates
are remarkably accurate, with a median absolute difference of 1.5 percentage points between
the Xbox and the exit poll numbers.

Not only do the Xbox data facilitate accurate estimation of voter intent across these
single-dimensional demographic categories, but they also do surprisingly well at estimating
two-way interactions (e.g., candidate support among 18-29 year-old Hispanics, and liberal
college graduates). Figure 6 shows this result, plotting the Xbox estimates against those de-
rived from the exit polling data for each of the 149 two-dimensional demographic subgroups.®

4Respondents’ 2008 vote was not asked on the 2012 exit poll, so we exclude that comparison from Figure 5.
5State contestedness is excluded from the two-way interaction groups since the 2012 state exit polls are
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Figure 6: Left panel: Differences between the Xbox MRP-adjusted estimates and the exit
poll estimates for the 30 largest two-dimensional demographic subgroups, ordered by the
difference. Positive values indicate the Xbox estimate is larger than the corresponding exit
poll estimate. Among these 30 subgroups, the median and mean absolute differences are
1.9 and 2.2 percentage points, respectively. Right panel: Two-party Obama support as
estimated from the 2012 national exit poll and from the Xbox data on the day before the
election, for various two-way interaction demographic subgroups (e.g., 65+ year-old women).
The sizes of the dots are proportional to the population sizes of the corresponding subgroups.

Most points lie close to the diagonal, indicating that the Xbox and exit poll estimates are
in agreement. Specifically, for women who are 65 and older—a group whose preferences one
might a priori believe are hard to estimate from the Xbox data—the difference between Xbox
and the exit poll is a mere one percentage point (49.5% and 48.5%, respectively). Across all
the two-way interaction groups, the median absolute difference is just 2.4 percentage points.
As indicated by the size of the points in Figure 6, the largest differences occur for relatively
small demographic subgroups (e.g., liberal Republicans), for which both the Xbox and exit
poll estimates are less reliable. For the 30 largest demographic subgroups, Figure 6 lists
the differences between Xbox and exit poll estimates. Among these largest subgroups, the
median absolute difference drops to just 1.9 percentage points.

not yet available, and the 2012 national exit poll does not have enough data to reliably estimate state
interactions; 2008 vote is also excluded, as it was not asked in the 2012 exit poll. The “other” race category
was also dropped as it was not consistently defined across the Xbox and exit poll datasets.
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4. Forecasting election day outcomes

4.1. Converting voter intent to forecasts

As mentioned above, daily estimates of voter intent do not directly correspond to esti-
mates of vote share on election day. There are two key factors for this deviation. First,
opinion polls (both representative and non-representative ones) only gauge voter preference
on the particular day when the poll is conducted, with the question typically phrased as, “if
the election were held today.” Political scientists and pollsters have long observed that such
stated preferences are prone to several biases, including the anti-incumbency bias, in which
the incumbent’s polling numbers tend to be lower than the ultimate outcome (Campbell,
2008; Erikson and Wlezien, 2008; Rothschild, 2013), and the fading early lead bias, in which
a big lead early in the campaign tends to diminish as the election gets closer (Erikson and
Wlezien, 2008). Moreover, voters’ attitudes are affected by information revealed over the
course of the campaign, so preferences weeks or months before election day are at best a
noisy indicator of one’s eventual vote. Second, estimates of vote share require a model of
likely voters. That is, opinion polls measure preferences among a hypothetical voter pool,
and are thus accurate only to the extent that this pool captures those who actually turn
out to vote on election day. Both of these factors introduce significant complications in
forecasting election day outcomes.

To convert daily estimates of voter intent to election day predictions—which we here-
after refer to as calibrating voter intent—we compare daily voter intent in previous elections
to the ultimate outcomes in those elections. Specifically, we collected historical data from
three previous U.S. presidential elections, in 2000, 2004, and 2008. For each year, we ob-
tained top-line (i.e., not individual-level) national and state estimates of voter intent from
all available polls conducted in those elections.® From this collection of polling data, we then
constructed daily estimates of voter intent by taking a moving average of the poll numbers,
in a similar manner to the major poll aggregators. We rely on traditional, representative
polls to reconstruct historical voter intent; in principle, however, we could have started with
non-representative polls if such data were available in previous election cycles.

We next infer a mapping from voter intent to election outcomes by regressing election
day vote share on the historical time-series of voter intent. The key difference between our
approach and previous related work (Erikson and Wlezien, 2008; Rothschild, 2009) is that we
explicitly model state-level correlations, via nested national and state models and correlated
error terms. Specifically, we first fit a national model given by

US US Us|,..US US
Ye = aot a1T; + a2|It,e |xt,e + a3t‘rt,e + 77(757 6)

where yUS is the national election day vote share of the incumbent party candidate in election
year e, xfes is the national voter intent of the incumbent party candidate at ¢t days before the
election in year e, and n ~ N(0,0?) is the error term. Both U5 and JJPE are offset by 0.5, so

the values run from —0.5 to 0.5 rather than 0 to 1. The term involving the absolute value

SWe collected the polling data from Pollster.com and RealClearPolitics.com.
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of voter intent pulls the vote share prediction toward 50%, capturing the diminishing early
lead effect. We do not include a main effect for time since it seems unlikely that the number
of days until the election itself contributes to the final vote share directly, but rather time
contributes through its interaction with the voter intent (which we do include in the model).

Similarly, the state model is given by

yss,rij - bO + blms:{,e + b2|I§¢T,e|x§:£e + b3t‘r§}‘,e + 8(87 t 6)

where y§"§ is the election day state vote share of the state’s incumbent party candidate” at
day t, x??e is the state voter intent at day ¢, and € is the error term. The outcome yfz is
offset by the national projected vote share on that day as fit with the national calibration
model, and x??e is offset by that day’s national voter intent. Furthermore, we impose two
restrictions on the magnitude and correlation structure of the error term &(s,t,e). First,
since the uncertainty naturally decreases as the election gets closer (as t becomes smaller),
we apply the heteroscedastic structure Var(e(s,t,e)) = (t + a)?, where a is a constant to
be estimated from the data. Second, the state-specific movements within each election year
are allowed to be correlated. For simplicity, and as in Chen et al. (2008), we assume these
correlations are uniform (i.e., all pairwise correlations are the same), which creates one more
parameter to be estimated from the data. We fit the full calibration model with the gls()
function in the R package nlme (Pinheiro et al., 2012).

In summary, the procedure for generating election day forecasts proceeds in three steps:

1. Estimate the joint distribution of state and national voter intent by applying MRP to
the Xbox data, as described in Section 3.

2. Fit the nested calibration model described above on historical data to obtain point
estimates for the parameters, including estimates for the error terms.

3. Convert the distribution of voter intent to election day forecasts via the fitted calibra-
tion model.

4.2. National and state election day forecasts

Figure 7 plots the projected vote shares and pointwise 95% confidence bands over time for
the 12 states with the most electoral votes. Though these time-series look quite reasonable,
it is difficult to assess their accuracy as there are no ground truth estimates to compare with
in the weeks prior to the election. As a starting point, we compare our state-level estimates
to those generated by prediction markets, which are widely considered to be among the
most accurate sources for political predictions (Rothschild, 2013; Wolfers and Zitzewitz,
2004). For each state, prediction markets produce daily probabilities of victory. Though
Figure 7 plots our forecasts in terms of expected vote share, our estimation procedure in
fact yields the full distribution of outcomes, and so we can likewise convert our estimates
to probabilistic forecasts. Figure 8 shows this comparison, where the prediction market

"State incumbent parties are defined as the state-by-state winners from the previous election, which is
more meaningful in this context than simply using the national incumbent.
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Figure 7: Projected Obama share of the two-party vote on election day for each of the
12 states with the most electoral votes, and associated 95% confidence bands. Compared
to the MRP-adjusted voter intent in Figure 4, the projected two-party Obama support is
more stable, and the North Carolina race switches direction after applying the calibration
model. Additionally, the confidence bands become much wider and give more reasonable
state-by-state probabilities of Obama victories.

estimate is derived by averaging the two largest election markets, Betfair and Intrade. Our
probabilistic estimates are largely consistent with the prediction market probabilities. In fact,
for races with little uncertainty such as in Texas and Massachusetts, the Xbox estimates do
not seem to suffer from the longshot bias common to prediction markets (Rothschild, 2009),
and instead yield probabilities closer to 0 or 1. For tighter races, the Xbox estimates—
although still highly correlated with the prediction market probabilities—look more volatile,
especially in the early part of the 45-day period. Since the ground truth is not clearly defined,
it is difficult to evaluate which method—Xbox or prediction markets—yields better results.
From a Bayesian perspective, if one believes the stability shown by prediction markets, this
could be incorporated into the structure of the Xbox calibration model.

With the full state-level outcome distribution, we can also estimate the distribution of
Electoral College votes. Figure 9 plots the median projected electoral votes for Obama over
the last 45-days of the election, together with the 95% confidence band. In particular, on
the day before the election, our model estimates Obama had an 88% chance of victory,
in line with estimates based on traditional polling data. For example, Obama was given
a 91% chance of victory, using a method built from Jackman (2005). Zooming in on the
day before the election, Figure 10 shows the full predicted distribution of electoral votes for
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2012 election and associated 95% confidence bands. The solid line represents the median of
the daily distribution. The horizontal dashed line represents the actual electoral votes, 332,
that Obama captured in 2012 election. Three vertical dotted lines indicate the dates of three
presidential debates.
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Figure 10: Projected distribution of electoral votes for Obama one day before the election.
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Obama needs for a tie. The blue vertical dashed line gives 332, the actual number of electoral
votes captured by Obama. The estimated likelihood of Obama winning the electoral vote is
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Obama. Compared to the actual 332 votes that Obama captured, we estimate a median of
312 votes, with the most likely outcome being 303. Though this distribution of Electoral
College outcomes seems reasonable, it does appear to have higher variance than one might
expect. In particular, the extreme outcomes seem to have unrealistically high likelihood
of occurring, which is likely a byproduct of our calibration model not fully capturing the
state-level correlation structure. Nonetheless, given that our forecasts are based on a highly
biased convenience sample of respondents, the model predictions are remarkably good.

5. Conclusion

Election forecasts not only need to be accurate, but also relevant, timely, and cost-
effective. In this paper, we construct forecasts satisfying all of these requirements using
extremely non-representative data. Though our data were collected on a proprietary polling
platform, in principle one can aggregate such non-representative samples at a fraction of
the cost of conventional survey designs. Moreover, the data produce forecasts that are
both relevant and timely, as they can be updated faster and more regularly than standard
election polls. Thus, the key question—and one of the main contributions of this paper—is
to assess the extent to which one can generate accurate predictions from non-representative
samples. Since there is limited ground truth for election forecasts, definitely establishing the
accuracy of our predictions is difficult. Nevertheless, we show that the MRP-adjusted and
calibrated Xbox estimates are intuitively reasonable, and also similar to those generated by
more traditional means.

Though our approach performed quite well, it required detailed data. In the face of
insufficient demographic information on respondents, inadequate population-level statistics,
or lack of historical election poll results, it would have been difficult to generate accurate
forecasts from non-representative data. Further, while much of our procedure is fairly me-
chanical, selecting the appropriate modeling framework requires some care. Fortunately,
however, at least with the Xbox data the regression estimates are stable after including only
a few key demographic variables (sex, age, state, race and party identification).

The greatest impact of non-representative polling will likely not be for presidential elec-
tions, but rather for smaller, local elections and specialized survey settings, where it is
impractical to deploy traditional methods due to cost and time constraints. For example,
non-representative polls could be used in Congressional elections, where there are currently
only sparse polling data. Non-representative polls could also supplement traditional surveys
(e.g., the General Social Survey) by offering preliminary results at shorter intervals. Fi-
nally, when there is a need to identify and track pivotal events that affect public opinion,
non-representative polling offers the possibility of cost-effective continuous data collection.
Standard representative polling will certainly continue to be an invaluable tool for the fore-
seeable future. However, 75 years after the Literary Digest failure, non-representative polling
(followed by appropriate post-data adjustment) is due for further exploration, for election
forecasting and in social research more generally.
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*

Take this one-time survey and then
' tell us what you think.

Don't worry - We'll keep your answers private and never share them with
anyone else. Take a new poll each day. Thanks for giving us your view. *-

' fﬁi‘h

Get Started

Figure A.1: The left panel shows the vote intention question, and the right panel shows what
respondents were presented with during their first visit to the poll.

Appendix A. Questionnaire

The only way to answer the polling questions was via the Xbox Live gaming platform.
There was no invitation or permanent link to the poll, and so respondents had to locate it
daily on the Xbox Live’s home page and click into it. The first time a respondent opted-into
the poll, they were directed to answer the nine demographics questions listed below. On all
subsequent times, respondents were immediately directed to answer between three and five
daily survey questions, one of which was always the vote intention question.

Intention Question: If the election were held today, who would you vote for?
Barack Obama\Mitt Romney\Other\Not Sure

Demographics Questions:

1. Who did you vote for in the 2008 Presidential election?
Barack Obama\John McCain\Other candidate\Did not vote in 2008

2. Thinking about politics these days, how would you describe your own political view-
point?
Liberal\Moderate\Conservative\Not sure

3. Generally speaking, do you think of yourself as a ...7
Democrat\Republican\Independent\ Other

4. Are you currently registered to vote?
Yes\No\Not sure

5. Are you male or female?
Male\ Female

6. What is the highest level of education that you have completed?
Did not graduate from high school\High school graduate\Some college or 2-year college
degree\4-year college degree or Postgraduate degree
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7. What state do you live in?
Dropdown with states — listed alphabetically; including District of Columbia and “None
of the above”

8. In what year were you born?
1947 or earlier\1948-1967\1968-1982\1983-1994

9. What is your race or ethnic group?

White\ Black\ Hispanic\Other
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