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Abstract

We propose a two-stage market making strategy to improve the
expressivity and liquidity of financial options markets, supporting
investors to trade options of any strike price at the most competitive
prices. In the first stage, we formulate a linear program (LP) to iden-
tify arbitrage opportunities and in the absence of arbitrage, find the
tightest price bounds for a family of option series associated with the
same security. Given a target option, the LP works by constructing
a portfolio of outstanding options across different types and strikes
to maximize immediate profit, while ensuring a nonnegative payoff
in the future. By using the technique, a market maker can quote at
any requested strike and provide liquidity to its maximum extent
at no loss. Evaluation on real-market options data shows that the
proposed LP can reduce bid-ask spreads significantly. In the sec-
ond stage, through building a connection between options markets
and prediction markets, we utilize a variant of the constant-utility
market maker to further improve liquidity at a constant bounded
loss. The loss can be considered as the market designer’s subsidy to
facilitate trading and elicit information. The market maker works
by always quoting at risk-neutral prices to keep its utility constant,
and thus can simultaneously recover the market’s collective estima-
tion on the probability distribution of the underlying security. We
demonstrate on simulated options data that our proposed market
maker can recover the option-implied probability distribution fairly
well in comparison to alternative static optimization methods. We
showcase several examples of probability distributions recovered
from real-market options data, revealing the market’s aggregated
belief behind observed option prices.
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1 Introduction

Financial markets, broadly speaking, are places where people gather
to trade assets and their derivatives. Depending on the ultimate pur-
pose, markets are designed differently with outcomes interpreted
accordingly. Traditional markets aim to match supply and demand,
and price is considered the revealed value of the underlying asset.
Prediction markets are designed to predict future events through
eliciting and aggregating information. Speculators bet on an event
by buying a contract for a one-dollar reward if the event occurs.
Therefore, the market price reflects a collective belief in the event,
often interpreted as a consensus probabilistic forecast [33].

With flavors of both, financial options markets provide investors
the opportunities to trade on contracts that specify agreements
upon potential future transactions. There are two basic types of
options: a call and a put that gives the respective right to buy and
sell an underlying asset at a given strike price and expiration date.
An option is a derivative instrument, as its value is a function of
the underlying asset. For example, an investor can buy a call option
which specifies the right to buy 100 shares of the S&P 500 index for
$5000 each at the end of 2024. On the expiration date, the investor
will exercise this right only if the S&P 500 is worth more than $5000;
meanwhile, the option seller who has written the option is obligated
to sell at $5000.

Many investors trade options to achieve a certain return pattern
or hedge risks, but other investors, called speculators, act solely on
their belief about the movement of the underlying asset price, buy-
ing an option when price falls below their estimate of its expected
value. Thus, option prices reveal investors’ collective risk-neutral
belief distribution of the underlying asset’s future price, which is
often recovered for both academic and practical purposes [18]. This
option-implied probability distribution has been further studied to
infer systematic disaster concerns [19] and future inflation [28].

Options derived from the same underlying asset, of the same
type, with the same strike price and expiration date are referred to
as an option series. Current options market treats different option
series separately, having each publicly traded in a distinct and
independent continuous double auction (CDA). Consider options
on a security offering both calls and puts, ten expiration dates and
twenty strike prices. All possible option series render a total of
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400 markets, among which investments get dispersed, even though
participants are interested in the same security. This can often lead
to the thin market problem, where few trades happen and bid-ask
spreads become wide.

A market maker (MM) who maintains quotes on both buy and sell
sides is often introduced to break the no-trade reticence and improve
price discovery. However, falling trading volumes in options market
are of raising concerns in recent years, as this drained liquidity can
even spur market makers to retrench, trapping the market in a
dangerous loop [12, 13]. Even for some of the most actively-traded
option families, empirical evidence has shown that liquidity can
vary much across option types and strikes. Cao and Wei (2010)
studied eight years of options trading data and find consistently
lower liquidity in puts and deep in-the-money options. As a result,
catering to the interest of majority, exchanges (e.g., CBOE) offer
options only at a limited number of strikes.

In this paper, we propose a two-stage market making strategy
to initiate an expressive and liquid financial options market, where
investors have the privilege to trade options at any strike price for
competitive prices. In the first stage, we formulate an efficient linear
program (LP) that can identify any arbitrage opportunity across a
family of options associated with a single security, and derive the
tightest possible pricing bound for options at arbitrary strike price.
Given a specified option, the LP works by finding the minimum
price of a portfolio with existing options that has a higher payoff
than that of the target option, and the maximum price of a portfolio
that has a lower payoff. By using such a technique, a market maker
can consolidate options written on the same underlying security,
quote at any requested strike price, and provide liquidity to its
maximum extent at no loss, regardless of final outcomes.

In the second stage, by establishing a connection between op-
tions markets and prediction markets, we employ a constant-utility
market maker to further improve liquidity. A constant-utility mar-
ket maker has several intriguing properties: (1) It has a worst-case
bounded loss, which can be considered as a preset subsidy to en-
courage trading and improve price discovery; (2) By quoting at
risk-neutral prices to keep utility constant, it can simultaneously
recover the market’s risk-neutral probability distribution of the
underlying security.

We evaluate the proposed LP on real-market options data of 30
stocks that compose the Dow Jones Industrial Average (D]I), and
find it can substantially tighten the market bids and asks. This indi-
cates that the market efficiency of less-traded option series can be
improved by its well-discovered siblings. We further demonstrate
on two simulated options data, one with exact options prices and
one with noisily generated bids and asks, that a constant-log-utility
market maker can recover option-implied distributions fairly well,
comparing with other optimization methods. Examples of probabil-
ity distributions implied from real-world options data suggest the
proposed LP, when using to preprocess market bids and asks, can
help recovering a smoother distribution.

2 Related Work

Rational Option Pricing. Arbitrage conditions have been studied
extensively in financial economics, with the importance firstly ad-
dressed in corporation valuation [22]. Merton (1973) extend it to
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rational option pricing by proving the necessity of convexity in op-
tion prices. Other relevant works examine no arbitrage conditions
to derive pricing bounds under different scenarios, including evalu-
ating in discrete-time model [25], with the presence of zero-coupon
bond [11] and risk-aversion [27].

Among those, the most relevant work to our approach in stage
one is by Herzel (2005), where a LP approach is used to examine
the existence of arbitrage by checking the convexity between every
strike pair. Wang et al. (2021) propose the use of linear and mixed-
integer linear programs to design matching functions for financial
exchanges to facilitate trading standard options as well as combi-
natorial financial options. Our work here focuses on the role of a
market maker, utilizing the LP approach to provide the most compet-
itive price quotes, which further help in recovering a more accurate
option-implied probability distribution of the underlying security.

Implied Probability from Options Prices. Two major approaches have
been proposed to recover the option-implied probability distribu-
tions. Parametric methods assume an option pricing model, such as
the Black-Scholes model [3] or some distribution family, with the
observed prices inverted accordingly to obtain parameters of the
distribution [2, 20]. However, stock market crashes has proved that
the assumed pricing model together with parameters estimated
from historical data usually fit market options prices poorly. There-
fore, the nonparametric methods are promoted [18, 23]. It works by
choosing probabilities to optimize an objective function, subject to
the constraint that the chosen probabilities yield prices consistent
with the observed market option prices. In order to get a feasible
solution, it is necessary to preprocess the observed option prices
and filter out any arbitrage violation. Our proposed constant-utility
market making approach falls into the nonparametric methods.
Instead of optimizing for expected utility, it keeps the utility con-
stant and ensures a bounded loss while recovering the implied
distribution.

Design of Prediction Markets. Interested in predicting future events,
prediction markets are designed to recover probabilities via infor-
mation aggregation. Though in a truly efficient market, prices will
be the best predictor of the event and no other information can
improve this aggregated forecast [33], many prediction markets are
thinly traded with little revealed information. Much prior work ded-
icates to solving the problem by designing automated market makers
to improve liquidity and aggregate information [1, 6, 7, 14, 15]. The
market maker constantly quotes according to some designed scor-
ing rules, and adjust the prices in response to the trading quantity.
A market designer can subsidize the market maker to elicit and
aggregate information, but would prefer a bounded-loss regardless
of the final outcome. Some common techniques include the logarith-
mic market scoring rule market maker [15] and the constant-utility
market maker [6], the framework we extend to options market
in this work. Recent works examining decentralized finance has
introduced an axiomatic framework that connects general constant
function market makers (CFMMs), which form the core implementa-
tion of Uniswap v2, to cost-function-based prediction markets [26].
Strategic liquidity provision is studied in [5, 8, 9], where liquid-
ity providers hold stochastic beliefs about the evolution of market
prices, and how contract prices may change along with market
prices via arbitrage and non-arbitrage trades.
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3 Preliminaries

We denote a call optionas Call(S, K, T) and a put option as Put(S,K, T),
which respectively grants the option buyer the right to buy and
sell an underlying security S at a specified strike price K on the
expiration date T.! That is, the option buyer decides whether to
exercise an option contract.

Suppose that a buyer spends $18 and purchases a call option,
Call(S&P 500, 5800, 20241231). If the S&P 500 is $6000 at expiration
(i.e., the last day of 2024), the buyer will pay the agreed strike $5800,
receive the index as cash, and get a payoff of $200 and a net profit
of $182 (assuming no time value). If the S&P 500 is $5600, the buyer
will walk away without exercising the option. Therefore, the payoff
of a purchased option is

¥ := max{ y(S — K), 0} (1)

where S is the value of underlying asset at expiration and y €
{—1,1} equals 1 for calls and —1 for puts. As the payoff for a buyer
is always non-negative, the seller receives a premium now (e.g., $18)
to compensate for future obligations.

Options written on the same underlying, type, strike, and expira-
tion are referred to as an option series. A standard option exchange
(e.g., CBOE) treats different option series separately, having each
publicly traded in a distinct and independent continuous double
auction (CDA), though their values depend commonly on the un-
derlying security. Investors can achieve a certain payoff pattern
through constructing a portfolio of options — a combination of long
and short positions of options with different strike prices.

Definition 1. Portfolio A is (weakly) dominant over portfolio B, if
the payoff of A is larger than (or equal to) that of B for all possible
states of the underlying asset in the future. Portfolio B is said to be
(weakly) dominated by A.

A rational investor will always prefer A when the two portfolios
have the same cost. However, if portfolio A is strictly cheaper than
B, an arbitrage opportunity arises.

No Arbitrage Principle [31]. Portfolios which are guaranteed to
have nonnegative payoffs must have a nonnegative cost.

4 Stage 1: A Linear Program to Remove
Arbitrage and Improve Bids and Asks

In this section, we propose a linear program (LP) to remove any
arbitrage opportunity and tighten market bids and asks, leveraging
portfolio dominance and the interconnectedness of option markets
written on the same underlying security. The model is simple with-
out making assumptions on the option’s pricing model and the
stochastic behavior of underlying security. We further demonstrate
that our proposed LP is computationally efficient, in which key
market operations (i.e., arbitrage removal and price quotes) can be
computed in polynomial time.

4.1 Problem Formulation

To use portfolio dominance, we consider all option series that relate
to the same underlying security and expiration (e.g., call and put
options on DJI across different strike prices). We represent an

'We omit T from the tuples for simplicity when consider options of the same expiration.
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option series offered in the market as (y;, Kj, bj, a;), with y; €
{—1, 1} denoting its type (put or call), K; its strike value, and (b;, a;)
its corresponding best bid and ask in the market. Throughout this
paper, we consider European options which can be exercised only at
expiration. The settlement value is calculated as the opening value
of the index on the expiration date or the last business day (usually
a Friday) before the expiration date.

Remove Arbitrage. We aim to find arbitrage opportunities that
may exist across option series. Specifically, the market maker (also
an arbitrageur in this case) decides the fraction y; € [0, 1] to sell
to each buy order at its bid b; and the fraction §; € [0, 1] to buy
from each sell order at its ask a;, with the objective of maximizing
net profit at the time of order transaction subject to no payoff loss
in the future at expiration for all possible states of the underlying
security S:

r;%x ZI: yibi — Zl: bia; (2)
s.t. Z yi max(y;(S — K;),0) < Z di max(y;i(S — K;),0)
i i
VS € [0, o)

We denote options sold as Portfolio I' and options bought as Port-
folio A, and the constraint enforces that Portfolio T is weakly domi-
nated by Portfolio A. In other words, it guarantees that regardless of
the value of S at expiration, the liability of the market maker from
sold options will not exceed the payoff gained from bought ones.
We note that as both sides of the constraint is a piecewise linear
function of S, it suffices to solve LP (2) by satisfying constraints
defined by S at each breakpoint. In our case, those breakpoints are
the defined strike values in the market, plus two endpoints: K U
{0, 0o}. Therefore, the proposed LP has | K|+2 payoff constraints and
requires time polynomial in the size of the problem instance to solve.

4.2 Improving Price Quotes for Options

By utilizing LP (2), the market maker can improve overall market
liquidity by facilitating trades among orders that may not match
under current independent-market design. After all arbitrage op-
portunities are removed,? we can further use variants of the LP
to improve the market bids and asks of existing options, and even
construct price quotes for options at strike values that are not of-
fered by the exchange. Specifically, we aim to derive the tightest
possible price bounds using portfolio dominance, given observed
market bids and asks on option series written on the same underly-
ing security. Given an option at query, (x, S, K, T), we would like
to derive

o The lowest ask by finding the minimum cost to buy a portfolio
that weakly dominates (), S, K, T)

r;{%l Zl: dia; — Zl: Yibi (3)
st Z 8; max( y; (S — K;),0) — Z yi max(y;(S - K;),0)
i i

> max(y(S - K),0) VS € [0, )

2If there exists arbitrage violation, prices may be negative or unbounded.
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o The highest bid by finding the maximum profit to sell a port-
folio that is weakly dominated by (y,S,K,T)

RN ¥
sty yimax(xi(S = Ki), 0) = " &imax(xi(S - Ki), 0)
i i

< max(y(S -K),0) VS € [0, o)

Solution to the above LPs yields the best price quotes, without
introducing arbitrage violation and any loss to the market maker
regardless of the realization of S. Specifically, from an automated
market maker’s perspective, it offers an ask at the lowest feasible
price; if the target option (y, S, K) is sold, the market maker can
always cover the short position by purchasing the weakly dom-
inant portfolio in LP (3) with the ask it received. Similarly, the
market maker quotes a bid at the highest possible price; if the op-
tion (y, S, K) is bought, it can get rid of the long position by selling
the portfolio with a lower payoff in LP (4) and getting the paid bid
back. By using such a technique, the automated market maker can
keep its position at zero, provide liquidity to the maximum possible
extent, and ensure no loss regardless of the underlying security
price at expiration. Below we provide two motivating examples
based on real-market options data to illustrate the usefulness of the
LPs and the improved price quotes.

Example 1 (Quote the best ask). We use LP (3) to find the best
asks for options of Dow Jones Industrial Average (DJI) that are
priced on August 28, 2023 and expire on March 15, 2024. The best
ask for Call(DJI, 350) can be improved from the market quote of $20
to $17.9, given by the following portfolio that weakly dominates
Call(DJI, 350):

e Buy 0.5 Call(DJI, 335) at the market ask $26.6,

e Buy 0.5 Call(DJI, 365) at the market ask $9.2.

Example 2 (Quote the best bid). We use LP (4) to find the best bids
for options of Dow Jones Industrial Average (DJI) that are priced
on August 28, 2023 and expire on March 15, 2024. The best bid for
Call(DJI, 120) can be improved from the market quote of $214 to
$223.10, given by the following portfolio that is weakly dominated
by Call(DJI, 120):

Sell 1.0 Call(DJI, 155) at the market bid $189.9

Sell 0.125 Call(DJI, 160) at the market bid $185.1

Sell 0.125 Put(DJI, 440) at the market bid $82.85

Buy 0.125 Call(DJI, 440) at the market ask $0.25,

Buy 1.0 Put(DJI, 160) at the market ask $0.26.

Remark. We note that solutions returned by the linear programs
may involve fractional shares of options and stocks. Usually, we can
naturally scale it to integer by incorporating the number of orders
available for the best bids and asks. For fractional shares of stocks,
ideally, an exchange that allows cash settlement can handle this.
However, if the exchange requires physical settlement and does not
allow fractional shares, we would need to normalize or round.

4.3 Empirical Evaluations

We evaluate the proposed LP(s) on real-market options data on DJI
index and the 30 stocks that compose the DJI, as these stocks have
actively traded options that cover a wide range of moneyness and
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------ sell portfolio

300 320 340 360 380 400
DJI
Figure 1: Payoffs of DJI options bought and sold in Example 1
that finds the lowest ask price for Call(DJI, 350).We zoom to
Spy1 € [300,400] to visualize portfolio dominance.

—— buy portfolio
6ol v sell portfolio

30

110 120 130 140 150 160 170 180
DJI
Figure 2: Payoffs of DJI options bought and sold in Example 2
that finds the highest bid price for Call(DJI, 120). We zoom
to Spyr € [110,180] to visualize portfolio dominance.

maturity levels. For each stock, we obtain contemporaneous closing
bids and asks of all available option series on the OptionMetric
dataset provided by the Wharton Research Data Services (WRDS).
Market prices used for this experiment are dated August 28, 2023,
at the close of market. There are a total of 28,638 distinct options
markets for the 30 stocks® in DJI on August 28, 2023, covering
around 14 expiration dates for each stock.

We use the proposed LP to find arbitrage opportunities and
tighten price quotes by considering the outstanding buy orders
and sell orders from independently-traded options markets that
associated with the same security and expiration date. Out of a
total of 356 such consolidated markets, the market maker spots
296 arbitrage opportunities, yielding an average profit of $2.28 (per
arbitrage). Detailed statistics for options of each stock are available
in the supplementary materials.*

For the other arbitrage-free markets, we find that the bid-ask
spreads can be reduced from an average of 78 cents for each option
series to 40 cents, by using the market maker to tighten the price
quotes. Specifically, for option series written on DJI, one of the
most actively traded financial options, the LP achieves a bid-ask
spread improvement of 33%. These results show that the market
maker, by considering orders on options markets across types and

30ur data includes American options that allow early exercise before expiration. In
practice, American options are almost always more profitable to sell than to exercise
early. In experiments, we ignore early exercise and treat them as European options.
4Supplementary materials can be found at https://shorturl.at/bqmjR
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strike prices, can potentially help to achieve a higher economic
efficiency, matching orders that the current independent design
cannot and providing more competitive bid and ask prices.

5 Stage 2: A Constant-Utility MM for Options

A market maker using our Stage 1 LP(s) based on portfolio dom-
inance provides liquidity without incurring any risk. To improve
liquidity further, some risk of loss is necessary, and the loss (ide-
ally bounded) can be viewed as the market designer’s subsidy to
facilitate trading and price discovery.

Therefore, in Stage 2, drawing inspiration from prediction mar-
ket designs, we propose a bounded-loss automated market maker
for the options market. The most popular prediction market maker
adopts the logarithmic market scoring rule, but its loss can be un-
bounded, growing with the number of outcomes, so technically
infinite in the case of stock prices [14, 15]. We thus consider a class
of constant utility market makers [6], which achieves constant ex-
pected utility and bounded loss under common classes of utility
functions, regardless of the number of outcomes. As the market
maker trades, its risk-neutral prices reflect an option-implied prob-
ability distribution of the underlying stock price, consistent with
the bid-ask bounds that we derive in Stage 1.

5.1 Background

We start by giving an overview of the utility-based market makers.
Consider predicting a discrete random variable with N mutually
exclusive and exhaustive outcomes (e.g., the opening price of MSFT
on the last day of 2024, ranging from 0 to 600, discretized at intervals
of 0.01).5 The market maker offers to trade N securities, and for
each share of security i sold, it pays $1 to the security holder when
outcome i happens. The market maker has a utility function for
wealth across all outcome states, denoted u(w), and offers to buy
or sell an infinitesimal share of security i at price equal to its risk-
neutral probability of state i [17], calculated as the normalized
product of its subjective probability 7; and marginal utility v’ (w;):
miu’ (wi)
= (5
Xjmju (wj)
In other words, p; is the instantaneous price for security i, at which
the market maker is indifferent between buying and selling.
Throughout trading, the market maker maintains a quantity vec-
tor q to keep track of total shares held by traders across states. The
quantity at state i, g;, also indicates the amount the market maker
must pay to traders if state i happens. To facilitate implementation,
a cost function C(q) is often introduced to record the total amount of
money traders have spent as a function of q. Therefore, the market
maker’s wealth at state i (i.e., w;) is C(q) — g;, and the cost function
is defined implicitly by:

Z miu(w;) = Z mu(C(q) - gi) = U, (6)

i

where U denotes the constant expected utility level, so called a
constant utility market maker. When we have a continuous, differ-
entiable, and monotonically increasing utility function u(-), which
is typically the case, there exists a unique C(q) by implicit function
theorem,; it can be found using binary search or other root-finding

SThough we cap the price at 600, we can treat the last outcome as “the opening price
of MSFT is no less than 600”.
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Payoff

} S
K K+K.'l'

Figure 3: Approximating the payoff of a call option with a
series of Arrow-Debreu securities.

methods (if no explicit form). The cost of a trade that moves the
quantity from q to q is

C(q') - C(g). (7)
It is proven that a bounded loss is guaranteed when the market
maker uses any utility function in the non-linear, hyperbolic absolute
risk aversion (HARA) class [6, 24], which contains most popular
parametric families of utilities, including logarithmic utility and

negative exponential utility that we will later use for our market
maker in options market.

5.2 Market Making to Recover Option-Implied
Probability

In Stage 2, we aim to extend the constant-utility market maker to
options market and use options prices to recover traders’ collective
estimation of state probabilities. We first approximate the payoff
of an option with a series of discretized Arrow-Debreu securities.
Figure 3 provides an illustration: A long position of a call option
with a strike price K, i.e., Call(S, K), is equivalent to buying k; =
Si — K shares of security i for every state where S; > K, betting
that outcome i will happen or equivalently, the value of underlying
stock at expiration is exactly S;. Similarly, buying a put option at
strike K is equivalent to buying x; = K —S; shares of Arrow-Debreu
security i for every S; < K.

Following the cost of a trade in Eq.(7), the cost of buying a call
option at strike K is C(q + k) — C(q), which can be calculated by
solving Eq.(6). With the setup, a market maker initialized with a
subjective probability s (usually uniform distribution), a constant
utility U, and a quantity vector q = 0 can offer to trade options of
any type and strike and achieve a worst-case loss of C(0), regardless
of the security’s outcome at expiration. When trading, the market
maker also facilitates price discovery by recovering prices in Eq.(5),
which reflect the market’s aggregated information about the under-
lying security (e.g., the probability that MSFT will have a specific
value at option expiration).

Leveraging the payoff approximation, we utilize a constant-
utility market maker to recover the option-implied probability dis-
tribution of the underlying stock price. We enforce that price quotes
provided by the market maker align with the tightened bids and
asks derived from market data in Stage 1. Algorithm 1 describes the
market making procedure. Specifically, for every strike, we query
the constant-utility market maker for its corresponding call and
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Algorithm 1 Recover option-implied probabilities by trading with
a constant-utility market maker.

Input: A market of N outcome events, indexed by i;

A vector of strike prices offered in the market: K;

Best bids and asks on call and put options across all strikes:

(b€, a%) and (bP, aP);

The utility function and constant utility: u(-) and U.

Output: Implied probability (price) for each state (security) i.
1: Initialize & < 1/N,q < 0,q" < 1

cost « solution to }; miu(C(q)) =U
2: while q # ¢’ do > market is not at quiescence

3 q «—q

4 for k in K do

5: kx «— max(S — k, 0) > check call options
6: ¢ « solution to }}; 7; log(C(q+ ) —qi — ki) =U

7: callpyy « ¢ — cost > MM quoted call buy
8: if b > callp,y then

9: q < q+K,cost—c

10: else

11: ¢ « solution }; 7 log(C(q— k) —qi +k;) =U

12: callgey « cost—c¢ > MM quoted call sell
13: if a, < callge then

14: q < q—K,cost ¢

15: x <« max(k —§,0) > check put options
16: ¢ « solution to }; 7 log(C(q+x) —qi —k;) =U

17: puty,yy < ¢ — cost > MM quoted put buy
18: if b‘z > puty,,, then

19: q—q+k,coste—c

20: else

21: ¢ « solution }; m;log(C(q — k) —qi + ki) =U

22: putg < cost—c > MM quoted put sell
23: if ai < puty then

24: q— q—K,cost ¢

7iu' (C(Q)—q:)

o C@-g)

25: return p; =

put prices by updating q and solving for C as in Eq. (6) (lines 4-24).
When the market maker’s quoted buy (sell) price is lower (higher)
than the market bid (ask), the trading agent would buy from (sell
to) the constant-utility market maker (lines 8, 13, 18, 23). As the
quoted price results in a trade, the market maker will update the
cost and quantity accordingly. To recover the option-implied prob-
ability distribution, trades will continue until quiescence where the
market maker’s quoted prices fall in the range of market bids and
asks across all strikes, and the risk-neutral prices as calculated in
Eq. (5) are the recovered probability for each state (line 25).

5.3 Empirical Evaluation

We evaluate the option-implied probability distributions recovered
by a constant-utility market maker that adopts the logarithmic
utility function. We first conduct experiments on simulated options
data, where a ground-truth distribution is set and known.® We are
interested in the market maker’s performance on options data with

®For real-market options data, the ground-truth belief distribution of the population is
unknown.
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Data type Objective function KL-Divergence
Constant-log-utility MM 0.0025
. Quadratic 0.0435
Exact Prices Goodness of fit 0.0129
Max entropy 0.0024
Constant-log-utility MM 0.0104
. Quadratic 0.0666
Bids and Asks Goodness of fit 0.0180
Max entropy 0.0065

Table 1: Average KL-divergence between probability distri-
butions recovered by different approaches and the ground
truth distributions.

0.07 . :
e-e ground truth
o -0 market maker
0.06 =;'§9 ¢-¢ quadratic
% *-* goodness of fit
0.05 Y A-~A maximum entropy
% s
z A W
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Figure 4: Option-implied probability distributions recovered
by different approaches from simulated bids and asks with
p=0.15and o = 0.3.

(1) exact prices and with (2) noisily generated bids and asks around
the exact prices. On both datasets, we compare our market mak-
ing approach with common optimization methods using different
objective functions. Finally, we demonstrate price distributions re-
covered by the constant-log-utility market maker from real-world
options data across time, and qualitatively compare the distribu-
tions implied from observed market data and from the LP-tightened
bids and asks in Stage 1.

5.3.1 Simulated Options Data. We generate exact option prices by
first sampling stock outcomes, and then calculating the expected
payoff across different strikes. Specifically, for each run, we sim-
ulate a stock with current price Sy at $100, an expected return of
u ~ N(0.15,0.02) and a volatility of o ~ N(0.30,0.05) per annum.
We sample 10,000 one-year-later stock outcomes from the corre-
sponding stochastic process and bin them into strike prices every
$5 apart to get the ground truth distribution. Both call and put
option prices are calculated at each strike as its expected payoff
given the sampled stock outcomes.

We further generate bids and asks around the exact price. Since
the width of a bid-ask spread is highly correlated with the absolute
value of the price, we fit the proportional bid-ask ratio—the ratio
of absolute difference to the sum—from real options data to fur-
ther generate bids and asks around exact option prices. We group
options into in-the-money, around-the-money and out-the-money
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Figure 5: Comparisons of option-implied probability distributions recovered from market option prices on December 26, 2017

and from LP tightened bids and asks.
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Figure 6: Different representations of recovered probability distributions across expirations dates. Observed option prices are

dated August 28, 2023 at the close of market.

options, and assign them a ratio of 0.03, 0.07 and 0.25 respectively.’
Gaussian noise is further added to the exact bids and asks. We run
the proposed LP over generated bids and asks across all strikes to
ensure no arbitrage violation, so that a risk-neutral distribution can
be recovered.

We compare the market making approach to optimization meth-
ods that minimize the following objective functions, where P’ indi-
cates a prior required by certain methods:

e Quadratic: 3 ;(Pj — P;.)2

e Goodness of fit: 3’ ;(Pj — PJ’.)Z/PJ’.

e Maximum Entropy: )’ ; P log(P;)
For the case with bids and asks, each method needs to satisfy the
constraints that expected option payoffs calculated from the re-
covered distribution are consistent with the generated bids and
asks.

Table 1 reports the average KL-divergence between the recovered
and the ground truth distribution over 500 simulations of each
method across the two datasets. As expected, the constant-log-
utility market maker can recover a better distribution from exact

"This is a rough estimation of proportional bid-ask ratio for simulation purpose. A
more rigorous model can fit the spread as a function of the corresponding strike price
and option price.
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option prices, as in the case of noisy bids and asks the quoted
price can stop anywhere within the range. On both datasets, it
statistically significantly outperforms optimization methods with
quadratic and goodness-of-fit objective functions. Figure 4 further
displays an example of option-implied distributions of different
approaches from noisily generated bids and asks with y = 0.15 and
o = 0.3. Despite different priors, all of the recovered distributions
exhibit fairly consistent shapes of posterior.

5.3.2  Real-Market Options Data. Finally, we demonstrate implied
probability distributions recovered from real-market options data.
Figure 5 provides some representative examples to qualitatively
compare distributions recovered from raw market option prices
and from the LP-tightened bids and asks in Stage 1. We notice
the distribution recovered from tightened bids and asks are usually
smoother. This may be explained by the proposed LP reducing much
of the noise in observed market bids and asks, leaving more precise
bounds on prices. Interestingly, we also find many option-implied
distributions are bimodal or even multi-modal, a phenomenon also
reported in other studies [10, 29, 30]. Plausible explanations for
this multi-modality include heterogeneity in investor’s beliefs, and
jumps and correlation between volatility and returns.



ICAIF *24, November 14-17, 2024, Brooklyn, NY, USA

Figure 6 shows the implied distributions recovered by the constant-
log-utility market maker (with U = 10) from the LP-tightened bid
and ask prices of MSFT options observed on August 28, 2023 from
WRDS. The implied distribution becomes flatter with larger vari-
ance, representing a higher level of uncertainty, as we look further
ahead to future expiration dates (Fig. 6(a)). Fig. 6(b) provides a visual
representation of Microsoft’s stock prices over a span of 800 days,
split into historical and projected periods. The quantiles summarize
what is implied by hundreds of options prices at every strike across
expiration date in one option family.

6 Conclusion

We introduced a two-stage market making strategy to improve
expressivity and liquidity in financial options markets, offering
investors the opportunity to trade options at any desired strike
for the most competitive prices. In the first stage, we formulate an
efficient linear program that can identify arbitrage opportunities
across the family of options associated with a single security. In
the absence of arbitrage, the LP finds the tightest possible bid-
ask spread for existing options, and constructs pricing bounds for
non-existing options at arbitrary strike prices. The LP works by
exploiting the pricing information embodied in all options and finds
a pricing range where no arbitrage opportunity arises. By using
such a technique, a market maker can accept trades of options on
arbitrary strike prices, consolidate distinct and independent options
markets interested in the same security and provide liquidity to its
maximum possible extent at no loss, regardless of final outcomes.

In the second stage, by building the connection between op-
tions markets and prediction markets, we adopt a constant-utility
market maker to further provide liquidity at a bounded loss. By
continuously updating its risk-neutral prices according to market
activities, the constant-utility market maker can simultaneously
recover the market’s risk-neutral probability distribution for the
underlying security that is consistent with the tight pricing bounds
derived in the first stage. We further demonstrate on two simulated
options data, one with exact options prices and one with noisily
generated bids and asks, that a constant log utility market maker
can recover option-implied distributions fairly precisely. Examples
of distributions implied from real world options data suggest the
proposed LP, when using to preprocess market bids and asks, can
help recovering a smoother distribution.
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